OxiMUter

Oxygen Saturation App

OXIMUter

Mohammed Balfas Paul Kaefer Dan Thomas III Xioa Zhang

Overview

Introduction

Review Functional & Nonfunctional Cases

Elements of Software Development

Code & Design Models

Demonstration

Functional Requirements

Android SDK

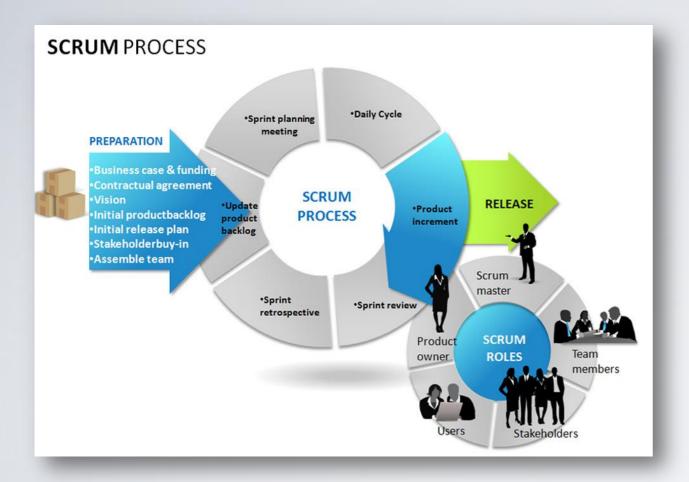
OxiMUter will be contructed using Java
OOP using Android SDK to work on
Android devices

Take Video

OxiMUter will take a short video of the user's finger for analysis.

Output Results

Blood oxygen levels should be displayed on screen after reliable video input


Nonfunctional Requirements

Intuitive UI

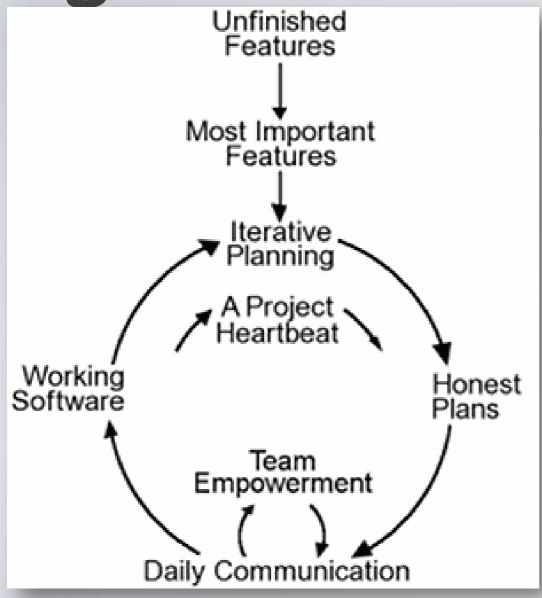
The UI should be easy to understand and uncluttered. Menus should assist the user if necessary.

Elements of Software Design

Agile Methodology

Requirement Elicitation

Research and interviews


User stories, requirements where gathered immediately to help determine best technological and scientific approach strategies.

Scrum Process

Meetings

Weekly meetings were held and progress tracked.

Agile Methodology

Paired Programming

CreateAndStoreVideo ()
VideoFramesExtraction()

The team was broken down into 2 teams to research reliable components for Android programming

Extreme Programming (XP)

Extensive testing

Software components were first examined, heavily tested, and then implemented in a relatively short time to satisfy use cases

Agile Methodology

Communication

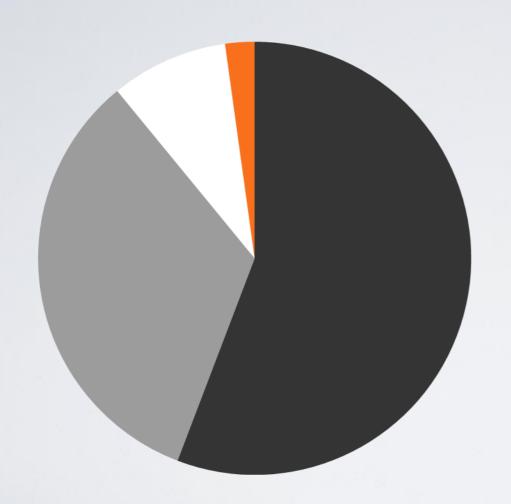
Meeting with Shareholder

Scientific approaches where validated and questions answered

Goals

Weekly Expectations

Weekly teams meetings working towards project deliverables.

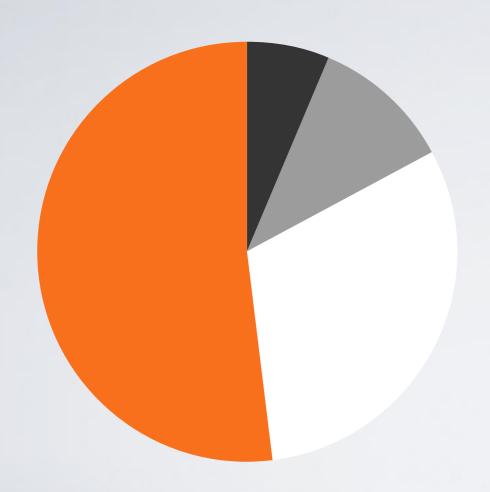

Acceptance Testing

Iteration III

Momentarily, a fairly stable demonstration of a initial prototype of OxiMUter

Development Time - Research

Increasingly productive



Iterations

- 1st lrt'n
- 2nd Irt'n
- 3rd lrt'n
- 4th Irt'n *
 - * projected

Development Time - Coding

Increasingly productive

Iterations

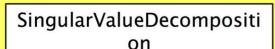
* - projected

Code & Design Models

Main routine

Point of Entry for Functional Cases

MainActivity


- -Intent i
- -int recording
- -TextView textArea;
- -int ACTION_TAKE_VIDEO
- -String VIDEO_STORAGE_KEY
- -String
- VIDEOVIEW_VISIBILITY_STORAGE KEY
- -VideoView mVideoView;
- -Uri mVideoUri;
- -MediaMetadataRetriever mediaMetadataRetriever:
- -Button.OnClickListener goButtonListener
- -@Override
- -@SuppressLint()
- +onCreate()
- +waitNseconds()
- +goButton()
- +onKeyDown()
- +onCreateOptionsMenu()
- +onOptionsItemSelected()
- -dispatchTakeVideoIntent()
- +getNewestVideoFile()
- +runExtractionCode()
- +processVideo()
- -handleCameraVideo()
- #onActivityResult()
- #onSaveInstanceState()
- #onRestoreInstanceState()
- +isIntentAvailable()

ProcessData

- +int[] imax;
- +int[] imin;
- +extrema()
- +getlmin() +getlmax()
- -@SuppressLint()
- +calculateAverageDeviceSP()
- +calculateSaturationParameter()
- +find()
- +diff()
- +findPeaks()

main routines

Mathematical Functions Processing Logic

- -double[][] U,V;
- -double[] s;
- -int m,n;
- +SingularValueDecomposition()
- +getU()
- +getV()
- +getSingularValues()
- +getS()
- +norm2()
- +cond()
- +rank()

EigenvalueDecomposition

- -int n;
- -boolean issymmetric;
- -double[] d,e;
- -double[][] V;
- -double[][] H;
- -double[] ort;
- -double cdivr,cdivi;
- -tred2()
- -tql2()
- -orthes()
- -cdiv()
- -hgr2()
- +EigenvalueDecomposition()
- +getV()
- +getRealEigenvalues()
- +getImagEigenvalues()
- +getD()

PolynomialRegression

- -int N;
- -int degree;
- -Matrix beta;
- -double SSE:
- -double SST;
- +PolynomialRegression()
- +beta()
- +degree()
- +R2()
- +predict()
- +toString()

Mathematical Functions Processing Logic

Matrix

- -double[][] A;
- -int m,n;
- +Matrix()
- +constructWithCopy()
- +copy()
- +clone()
- +getArray()
- +getArrayCopy()
- +getColumnPackedCopy()
- +getRowPackedCopy()
- +getRowDimension()
- +getColumnDimension()
- +get()
- +getMatrix()
- +set()
- +setMatrix()
- +transpose()
- +norm1()
- +norm2() +normInf()
- +normF()
- +uminus()
- +plus()
- +plusEquals()
- +minus()
- +minusEquals()
- +arrayTimes()
- +arravTimesEquals()
- +arrayRightDivide()
- +arrayRightDivideEquals()
- +arrayLeftDivide()
- +arrayLeftDivideEquals()
- +times()
- +timesEquals()
- +lu()
- +qr()
- +chol()
- +svd()
- +eig()
- +solve()
- +solveTranspose()
- +inverse()
- +det()
- +rank()
- +cond()
- +trace()
- +random()
- +identity()
- +print()
- +read()
- -checkMatrixDimensions()

LUDecomposition

- -double[][] LU:
- -int m,n,pivsign;
- -int[] piv;
- +LUDecomposition()
- +isNonsingular()
- +getL()
- +getU()
- +getPivot()
- +getDoublePivot()
- +det()
- +solve()

CholeskyDecomposition

- -double[][] L;
- -int n:
- -boolean isspd:
- +CholeskyDecomposition()
- +isSPD()
- +getL()
- +solve()

QRDecomposition

- -double[][] QR;
- -int m,n;
- -double[] Rdiag;
- +QRDecomposition()
- +isFullRank()
- +getH()
- +getR() +getQ()
- +solve()

Contact me for the .apk

